Products

Bearing

Date: 2019-01-30 15:36
Bearing
 
Ball bearing
 
A bearing is a machine element that constrains relative motion to only the desired motion, and reduces friction between moving parts. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts. Most bearings facilitate the desired motion by minimizing friction. Bearings are classified broadly according to the type of operation, the motions allowed, or to the directions of the loads (forces) applied to the parts.
 
Rotary bearings hold rotating components such as shafts or axles within mechanical systems, and transfer axial and radial loads from the source of the load to the structure supporting it. The simplest form of bearing, the plain bearing, consists of a shaft rotating in a hole. Lubrication is often used to reduce friction. In the ball bearing and roller bearing, to prevent sliding friction, rolling elements such as rollers or balls with a circular cross-section are located between the races or journals of the bearing assembly. A wide variety of bearing designs exists to allow the demands of the application to be correctly met for maximum efficiency, reliability, durability and performance.
 
The term "bearing" is derived from the verb "to bear";a bearing being a machine element that allows one part to bear (i.e., to support) another. The simplest bearings are bearing surfaces, cut or formed into a part, with varying degrees of control over the form, size, roughness and location of the surface. Other bearings are separate devices installed into a machine or machine part. The most sophisticated bearings for the most demanding applications are very precise devices; their manufacture requires some of the highest standards of current technology.

History
 
Tapered roller bearing
 
The invention of the rolling bearing, in the form of wooden rollers supporting, or bearing, an object being moved is of great antiquity, and may predate the invention of the wheel.
 
Though it is often claimed that the Egyptians used roller bearings in the form of tree trunks under sleds,this is modern speculation. They are depicted in their own drawings in the tomb of Djehutihotep as moving massive stone blocks on sledges with liquid-lubricated runners which would constitute a plain bearing. There are also Egyptian drawings of bearings used with hand drills.
 
The earliest recovered example of a rolling element bearing is a wooden ball bearing supporting a rotating table from the remains of the Roman Nemi ships in Lake Nemi, Italy. The wrecks were dated to 40 BC.
 
Leonardo da Vinci incorporated drawings of ball bearings in his design for a helicopter around the year 1500. This is the first recorded use of bearings in an aerospace design. However, Agostino Ramelli is the first to have published sketches of roller and thrust bearings. An issue with ball and roller bearings is that the balls or rollers rub against each other causing additional friction which can be reduced by enclosing the balls or rollers within a cage. The captured, or caged, ball bearing was originally described by Galileo in the 17th century.
 
The first practical caged-roller bearing was invented in the mid-1740s by horologist John Harrison for his H3 marine timekeeper. This uses the bearing for a very limited oscillating motion but Harrison also used a similar bearing in a truly rotary application in a contemporaneous regulator clock.

Maintenance and lubrication
Many bearings require periodic maintenance to prevent premature failure, but many others require little maintenance. The latter include various kinds of fluid and magnetic bearings, as well as rolling-element bearings that are described with terms including sealed bearing and sealed for life. These contain seals to keep the dirt out and the grease in. They work successfully in many applications, providing maintenance-free operation. Some applications cannot use them effectively.
 
Nonsealed bearings often have a grease fitting, for periodic lubrication with a grease gun, or an oil cup for periodic filling with oil. Before the 1970s, sealed bearings were not encountered on most machinery, and oiling and greasing were a more common activity than they are today. For example, automotive chassis used to require "lube jobs" nearly as often as engine oil changes, but today's car chassis are mostly sealed for life. From the late 1700s through mid 1900s, industry relied on many workers called oilers to lubricate machinery frequently with oil cans.
 
Factory machines today usually have lube systems, in which a central pump serves periodic charges of oil or grease from a reservoir through lube lines to the various lube points in the machine's bearing surfaces, bearing journals, pillow blocks, and so on. The timing and number of such lube cycles is controlled by the machine's computerized control, such as PLC or CNC, as well as by manual override functions when occasionally needed. This automated process is how all modern CNC machine tools and many other modern factory machines are lubricated. Similar lube systems are also used on nonautomated machines, in which case there is a hand pump that a machine operator is supposed to pump once daily (for machines in constant use) or once weekly. These are called one-shot systems from their chief selling point: one pull on one handle to lube the whole machine, instead of a dozen pumps of an alemite gun or oil can in a dozen different positions around the machine.
 
The oiling system inside a modern automotive or truck engine is similar in concept to the lube systems mentioned above, except that oil is pumped continuously. Much of this oil flows through passages drilled or cast into the engine block and cylinder heads, escaping through ports directly onto bearings, and squirting elsewhere to provide an oil bath. The oil pump simply pumps constantly, and any excess pumped oil continuously escapes through a relief valve back into the sump.
 
Many bearings in high-cycle industrial operations need periodic lubrication and cleaning, and many require occasional adjustment, such as pre-load adjustment, to minimise the effects of wear.
 
Bearing life is often much better when the bearing is kept clean and well lubricated. However, many applications make good maintenance difficult. For example, bearings in the conveyor of a rock crusher are exposed continually to hard abrasive particles. Cleaning is of little use, because cleaning is expensive yet the bearing is contaminated again as soon as the conveyor resumes operation. Thus, a good maintenance program might lubricate the bearings frequently but not include any disassembly for cleaning. The frequent lubrication, by its nature, provides a limited kind of cleaning action, by displacing older (grit-filled) oil or grease with a fresh charge, which itself collects grit before being displaced by the next cycle.
 
Rolling-element bearing outer race fault detection
 
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (May 2015) (Learn how and when to remove this template message)
Rolling-element bearings are widely used in the industries today, and hence maintenance of these bearings becomes an important task for the maintenance professionals. The rolling-element bearings wear out easily due to metal-to-metal contact, which creates faults in the outer race, inner race and ball. It is also the most vulnerable component of a machine because it is often under high load and high running speed conditions. Regular diagnostics of rolling-element bearing faults is critical for industrial safety and operations of the machines along with reducing the maintenance costs or avoiding shutdown time. Among the outer race, inner race and ball, the outer race tends to be more vulnerable to faults and defects.
 
There is still room for discussion as to whether the rolling element excites the natural frequencies of bearing component when it passes the fault on the outer race. Hence we need to identify the bearing outer race natural frequency and its harmonics. The bearing faults create impulses and results in strong harmonics of the fault frequencies in the spectrum of vibration signals. These fault frequencies are sometimes masked by adjacent frequencies in the spectra due to their little energy. Hence, a very high spectral resolution is often needed to identify these frequencies during a FFT analysis. The natural frequencies of a rolling element bearing with the free boundary conditions are 3 kHz. Therefore, in order to use the bearing component resonance bandwidth method to detect the bearing fault at an initial stage a high frequency range accelerometer should be adopted, and data obtained from a long duration needs to be acquired. A fault characteristic frequency can only be identified when the fault extent is severe, such as that of a presence of a hole in the outer race. The harmonics of fault frequency is a more sensitive indicator of a bearing outer race fault. For a more serious detection of defected bearing faults waveform, spectrum and envelope techniques will help reveal these faults. However, if a high frequency demodulation is used in the envelope analysis in order to detect bearing fault characteristic frequencies, the maintenance professionals have to be more careful in the analysis because of resonance, as it may or may not contain fault frequency components.
 
Using spectral analysis as a tool to identify the faults in the bearings faces challenges due to issues like low energy, signal smearing, cyclostationarity etc. High resolution is often desired to differentiate the fault frequency components from the other high-amplitude adjacent frequencies. Hence, when the signal is sampled for FFT analysis, the sample length should be large enough to give adequate frequency resolution in the spectrum. Also, keeping the computation time and memory within limits and avoiding unwanted aliasing may be demanding. However, a minimal frequency resolution required can be obtained by estimating the bearing fault frequencies and other vibration frequency components and its harmonics due to shaft speed, misalignment, line frequency, gearbox etc.
 
Packing
Some bearings use a thick grease for lubrication, which is pushed into the gaps between the bearing surfaces, also known as packing. The grease is held in place by a plastic, leather, or rubber gasket (also called a gland) that covers the inside and outside edges of the bearing race to keep the grease from escaping.
 
Bearings may also be packed with other materials. Historically, the wheels on railroad cars used sleeve bearings packed with waste or loose scraps of cotton or wool fiber soaked in oil, then later used solid pads of cotton.
 
Ring oiler
Further information: Ring oiler
Bearings can be lubricated by a metal ring that rides loosely on the central rotating shaft of the bearing. The ring hangs down into a chamber containing lubricating oil. As the bearing rotates, viscous adhesion draws oil up the ring and onto the shaft, where the oil migrates into the bearing to lubricate it. Excess oil is flung off and collects in the pool again.
 
Splash lubrication
Some machines contain a pool of lubricant in the bottom, with gears partially immersed in the liquid, or crank rods that can swing down into the pool as the device operates. The spinning wheels fling oil into the air around them, while the crank rods slap at the surface of the oil, splashing it randomly on the interior surfaces of the engine. Some small internal combustion engines specifically contain special plastic flinger wheels which randomly scatter oil around the interior of the mechanism.
 
Pressure lubrication
For high speed and high power machines, a loss of lubricant can result in rapid bearing heating and damage due to friction. Also in dirty environments the oil can become contaminated with dust or debris that increases friction. In these applications, a fresh supply of lubricant can be continuously supplied to the bearing and all other contact surfaces, and the excess can be collected for filtration, cooling, and possibly reuse. Pressure oiling is commonly used in large and complex internal combustion engines in parts of the engine where directly splashed oil cannot reach, such as up into overhead valve assemblies. High speed turbochargers also typically require a pressurized oil system to cool the bearings and keep them from burning up due to the heat from the turbine.
 
Composite bearings
Composite bearings are designed with a self-lubricating polytetrafluroethylene (PTFE) liner with a laminated metal backing. The PTFE liner offers consistent, controlled friction as well as durability whilst the metal backing ensures the composite bearing is robust and capable of withstanding high loads and stresses throughout its long life. Its design also makes it lightweight-one tenth the weight of a traditional rolling element bearing.